804 research outputs found

    Numerical simulation of one-dimensional heat transfer in composite bodies with phase change

    Get PDF
    A numerical simulation was developed to investigate the one dimensional heat transfer occurring in a system composed of a layered aircraft blade having an ice deposit on its surface. The finite difference representation of the heat conduction equations was done using the Crank-Nicolson implicit finite difference formulation. The simulation considers uniform or time dependent heat sources, from heaters which can be either point sources or of finite thickness. For the ice water phase change, a numerical method which approximates the latent heat effect by a large heat capacity over a small temperature interval was applied. The simulation describes the temperature profiles within the various layers of the de-icer pad, as well as the movement of the ice water interface. The simulation could also be used to predict the one dimensional temperature profiles in any composite slab having different boundary conditions

    Energy-efficient traffic engineering

    Get PDF
    The energy consumption in telecommunication networks is expected to grow considerably, especially in core networks. In this chapter, optimization of energy consumption is approached from two directions. In a first study, multilayer traffic engineering (MLTE) is used to assign energy-efficient paths and logical topology to IP traffic. The relation with traditional capacity optimization is explained, and the MLTE strategy is applied for daily traffic variations. A second study considers the core network below the IP layer, giving a detailed power consumption model. Optical bypass is evaluated as a technique to achieve considerable power savings over per-hop opticalelectronicoptical regeneration. Document type: Part of book or chapter of boo

    Classifying the Arithmetical Complexity of Teaching Models

    Full text link
    This paper classifies the complexity of various teaching models by their position in the arithmetical hierarchy. In particular, we determine the arithmetical complexity of the index sets of the following classes: (1) the class of uniformly r.e. families with finite teaching dimension, and (2) the class of uniformly r.e. families with finite positive recursive teaching dimension witnessed by a uniformly r.e. teaching sequence. We also derive the arithmetical complexity of several other decision problems in teaching, such as the problem of deciding, given an effective coding {L0,L1,L2,}\{\mathcal L_0,\mathcal L_1,\mathcal L_2,\ldots\} of all uniformly r.e. families, any ee such that Le={L0e,L1e,,}\mathcal L_e = \{L^e_0,L^e_1,\ldots,\}, any ii and dd, whether or not the teaching dimension of LieL^e_i with respect to Le\mathcal L_e is upper bounded by dd.Comment: 15 pages in International Conference on Algorithmic Learning Theory, 201

    A Map of Update Constraints in Inductive Inference

    Full text link
    We investigate how different learning restrictions reduce learning power and how the different restrictions relate to one another. We give a complete map for nine different restrictions both for the cases of complete information learning and set-driven learning. This completes the picture for these well-studied \emph{delayable} learning restrictions. A further insight is gained by different characterizations of \emph{conservative} learning in terms of variants of \emph{cautious} learning. Our analyses greatly benefit from general theorems we give, for example showing that learners with exclusively delayable restrictions can always be assumed total.Comment: fixed a mistake in Theorem 21, result is the sam

    Design of qos-aware energy-efficient fiber–wireless access networks

    Get PDF
    Energy-efficient network design has recently become a very important topic because of the energy cost increases in service providers’ infrastructures. This is of particular importance in access networks because of the growing demand for digital traffic by end users. Here we address the challenge of reducing the energy consumption of fiber–wireless (FiWi) access networks, that use both optical and radio frequency technologies to provide high bandwidth and ubiquity for end-user applications, while keeping delay under a threshold. Our goal is to find optimal sleep mode schedulings that allow energy consumption to be reduced while keeping packet delay acceptable. For this purpose a mathematical formalization and an algorithm are developed. The results show that the proposed approach is able to reduce the average packet delay, with negligible energy cost increases, in many scenarios, besides being computationally efficient and scalable. The proposed approach may, therefore, serve as a basis for planning and design of quality of service-aware energy-efficient FiWi access networks.This work was supported by FCT (Foundation for Science and Technology) of Portugal within CEOT (Center for Electronic, Optoelectronic and Telecommunications)

    A novel Apaf-1–independent putative caspase-2 activation complex

    Get PDF
    CVaspase activation is a key event in apoptosis execution. In stress-induced apoptosis, the mitochondrial pathway of caspase activation is believed to be of central importance. In this pathway, cytochrome c released from mitochondria facilitates the formation of an Apaf-1 apoptosome that recruits and activates caspase-9. Recent data indicate that in some cells caspase-9 may not be the initiator caspase in stress-mediated apoptosis because caspase-2 is required upstream of mitochondria for the release of cytochrome c and other apoptogenic factors. To determine how caspase-2 is activated, we have studied the formation of a complex that mediates caspase-2 activation. Using gel filtration analysis of cell lysates, we show that caspase-2 is spontaneously recruited to a large protein complex independent of cytochrome c and Apaf-1 and that recruitment of caspase-2 to this complex is sufficient to mediate its activation. Using substrate-binding assays, we also provide the first evidence that caspase-2 activation may occur without processing of the precursor molecule. Our data are consistent with a model where caspase-2 activation occurs by oligomerization, independent of the Apaf-1 apoptosome

    Light Ions Response of Silicon Carbide Detectors

    Get PDF
    Silicon carbide (SiC) Schottky diodes 21 mum thick with small surfaces and high N-dopant concentration have been used to detect alpha particles and low energy light ions. In particular 12C and 16O beams at incident energies between 5 and 18 MeV were used. The diode active-region depletion-thickness, the linearity of the response, energy resolution and signal rise-time were measured for different values of the applied reverse bias. Moreover the radiation damage on SiC diodes irradiated with 53 MeV 16O beam has been explored. The data show that SiC material is radiation harder than silicon but at least one order of magnitude less hard than epitaxial silicon diodes. An inversion in the signal was found at a fluence of 10^15 ions/cm^2.Comment: 20 pages, 16 figures, submitted for publication to Nuclear Instruments and Methods in Physics Research

    Informal Action—Adjudication—Rule Making: Some Recent Developments in Federal Administrative Law

    Get PDF
    Direct energy consumption of ICT hardware is only “half the story.” In order to get the “whole story,” energy consumption during the entire life cycle has to be taken into account. This chapter is a first step toward a more comprehensive picture, showing the “grey energy” (i.e., the overall energy requirements) as well as the releases (into air, water, and soil) during the entire life cycle of exemplary ICT hardware devices by applying the life cycle assessment method. The examples calculated show that a focus on direct energy consumption alone fails to take account of relevant parts of the total energy consumption of ICT hardware as well as the relevance of the production phase. As a general tendency, the production phase is more and more important the smaller (and the more energy-efficient) the devices are. When in use, a tablet computer is much more energy-efficient than a desktop computer system with its various components, so its production phase has a much greater relative importance. Accordingly, the impacts due to data transfer when using Internet services are also increasingly relevant the smaller the end-user device is, reaching up to more than 90 % of the overall impact when using a tablet computer.QC 20140825</p
    corecore